SO310KR APEX PT11212006 USA Be0 60024

INCREASING POWER DENSITY FOR MOTOR DRIVES WITH SILICON CARBIDE

Broderick Krager, Associate Fellow

- 1. Introduction to Apex Motor Drive Options
- 2. SiC vs GaN vs Silicon
- 3. Benefits of SiC in a Hybrid Architecture
- 4. How to Control Apex SiC Products
- 5. Commutation Schemes for Maximizing Motor Efficiency

INTROLCTION TO APEX MOTOR DRVE OPTIONS

WHO IS APEX MICROTECHNOLOGY?

- Industry leader in high power analog devices since 1980
- Vertically integrated design and production facility located in Tucson, Arizona (USA)
- Subsidiary of HEICO, a successful and technology-driven aerospace, industrial, defense, and electronics company.
- IS09001 & MIL-PRF-38534 Certified

Reflow

WHAT DOES APEX DO IN MOTOR DRIVE?

DC Brushed Motors (H-bridge)

MSA260 ^{IGBT} 20A, 450V

SA50 5A, 80V

DC Brushless Motors (3-phase)

APEX MOTOR DRIVE CIRCUITS – UNDER THE HOOD

SICVS. GaNVS. Silicon

A comparison of switch technologies across applications

WHAT IS SILICON CARBIDE?

- First used as a commercial semiconductor in 1906
 - Same year as Silicon
- Made by passing current through molten Silica/Carbon mixture
- Incredibly hard material, commonly used in abrasive tools, disc brakes

BANDGAP ENERGY

SiC has up to 3 times higher bandgap energy than Silicon

- 10 times higher breakdown voltage
- Operation up to 1000°C

TECHNOLOGY COMPARISON

Apex Microtechnology

SiC 650V 100A 30mΩ 40ns

Si 650V 10A 1Ω 85ns

WHY IS IT SO EXPENSIVE?

Most processing is identical to that of Silicon except:

- Crystal Growth Physical Vapor Transport vs Float-Zone
- Wafering & polishing very hard material
- Epitaxy different dopants than Si

Polished Wafers

BENEFITS OF SIC IN A HYBRID ARCHTECTURE

WHAT IS A HYBRID CIRCUIT?

"electronic subassemblies [...] that can be fabricated as a separate module." – Motorola

Hybrids typically include:

- Ceramic substrate
- Bare-Die components
- Wirebonds
- Thickfilm-printed conductors, resistors, and insulators

ADVANTAGES OF HYBRID TECHNOLOGY

Bare Die allow for more dense circuit construction

ADVANTAGES OF HYBRID TECHNOLOGY

Parasitics

Parasitic inductance in the gate-source loop is optimized over a discrete design.

ADVANTAGES OF HYBRID TECHNOLOGY

Power Density

- Substrate choices make it easier to get the heat out
- Higher Thermal Conductivity leads to:
 - Lower temperature rise per Watt
 - More Watts per Cubic Centimeter

Material	Thermal Conductivity (W/m-K)
Copper	400
Beryllium Oxide	290
Aluminum	170
Aluminum Nitride	170
Aluminum Oxide	30
Silicon Nitride	30
FR-4 with Thermal Vias	16
FR-4	0.29

DESIGN EXAMPLE – 650V SiC 30mΩ 3-PHASE MODULE

Hybrid R_{0JA} = 2.38 °C/W T_{Junction} = 175 °C P_{delivered} = 11.2 kW

37% More Power Output!

SILICON CARBIDE IN HYBRID ASSEMBLY- SUMMARY

- All else being equal, Hybrids offer the exact same advantages as Silicon Carbide
- Combining these technologies leads to compound benefits

	HYBRID	DISCRETE
Power Output	Higher	Lower
Power Density	Higher	Lower
Circuit Size	Smaller	Larger
Heatsink Size	Smaller	Larger
Switching Losses	Lower	Higher

HOWTO CONTROL APEX SIC PRODUCTS

Interfacing with an integrated Motor Drive module

TYPES OF APEX MOTOR DRIVE MODULES

Standard Modules

- User sends signals to turn each switch on/off.
- Closed-loop control created externally

Mixed Modules

- User sends commands to activate several functions
- Closed-loop control managed by the module

OUTPUT STATES

Truth table for controlling the output state

HS input	LS input	Output State
0	0	High- Impedance (HZ)
0	1	Ground (0)
1	0	High- Voltage (1)
1	1	Do not use

COMJATION SCHEMES FOR MAXIMZING MOTOR EFFICIENCY

Sequencing the output states for various applications

BRUSHED VS. BRUSHLESS

Brushed DC Motor Mechanically Commutated Brushless DC Motor Electrically Commutated

SINUSOIDAL COMMUTATION

- Requires Most Complicated Controller Hardware.
- Recommended for PMSMs.
- Low Torque Ripple.
- Limited to Low RPMs.
- Requires Encoder

TRAPEZOIDAL COMMUTATION

- Simplest Method no dead-time required.
- Recommended for most BLDC motors.
- Low-speed torque is a challenge use for high RPM applications
- Pairs well with Hall-effect sensors

10/30/2020

Apex Microtechnology

Phase U

Phase V

Phase W

30

SIX-STEP COMMUTATION

- Simple, but does require dead-time
- Good option for BLDC motors
- Offers smoother torque than trapezoidal – energizes more phases.
- Pairs well with Hall-effect sensors

