

















Littelfuse 功率和保护器 件简介及在工业产品中 的应用

Ys Du

ydu@littelfuse.com

Tel: 13910791990



Expertise Applied | Answers Delivered

### From Small Beginnings Through Decades of Innovation

- Founded in 1927
- Introduced many innovative, industry-first technologies
- Today
  - Designer, manufacturer, and seller of components and modules for circuit protection, power control, and sensing
  - 11,000+ dedicated and innovative employees
  - 1,000+ Engineers for new material and process design
  - Publicly held—NASDAQ: LFUS
  - More than 40 locations worldwide:
    - Americas
    - Europe
    - Asia





# Protect | Control | Sense — A Global Approach

#### Protect

- Today's sophisticated electronics require greater protection from ESD, power surges and other occurrences
- Handle more power in smaller products
- Innovative circuit protection solutions



#### Control

- Safely and efficiently control power in even the harshest environments
- Limit equipment damage and minimize electrical hazards
- Improve productivity and reduce costs



#### Sense

- Sensing technologies are increasingly used to support complex electronic systems
- Broad platform of technologies help improve product performance, comfort, convenience and safety



#### **Protect | Control | Sense — solutions for many markets**

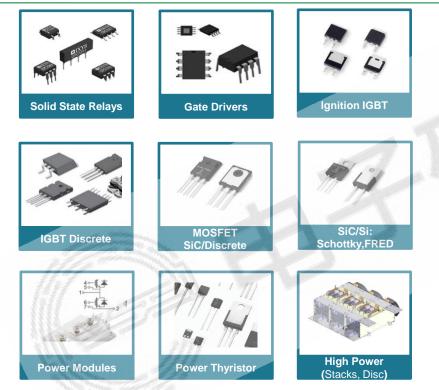




## Protection: helping make products safer & reduce TCO



- Broadest protection technology portfolio with many industry-first solutions.
- Independent testing capabilities to for compliance with industry and national standards including: UL, IEC, ITU, AEC-Q, and others.
- Application knowledge to help our customers address functional requirements and regulatory compliance.




TCO: Total Cost of Ownership PPTC: Polymeric Positive Temperature Coefficient ESD: Electrostatic Discharge TVS: Transient Voltage Suppression

MOV: Metal Oxide Varistors MLV: Multi-Layer Varistors GDT: Gas Discharge Tubes



## **Control: broad power semiconductors offering**



- Leading Silicon and SiC technologies spanning a wide range of power needs.
  - Broad offering of components & modules packaging options: standard and application-specific.
  - Customer-centric focus: design, test, and application engineering support



IGBT: Insulated-gate Bipolar Transistor SSR: Solid State Relays FRED: Fast Recovery Epitaxial Diodes SiC: Silicon Carbide



# Sensing: standard and customized solutions



- Comprehensive range of temperature and magnetic sensing technologies; portfolio of standard and custom products.
- Recognized for highly reliable sensing solutions for use in automotive, appliance, industrial, and other applications.
- Custom sensor design support: deep applications know-how, and magnetitic & mechanical modeling.



NTC: Negative Temperature Coefficient RTD: Resistance Temperature Detector PTC: Positive Temperature Coefficient RTP: Reflowable Thermal Protection



#### Global Labs — Designing and Validating Next-Generation Products and Solutions

- Network of global labs and design centers
  - High Power Labs
  - Semiconductor Application Labs
  - Product Evaluation, Reliability and Applications Labs
  - Materials Labs
- Combine comprehensive testing capabilities with consultation
- Robust circuit protection testing
- Simulate harsh environments
- Analyze sensing technologies
- Assure high performance, reliability, safety and regulatory compliance



















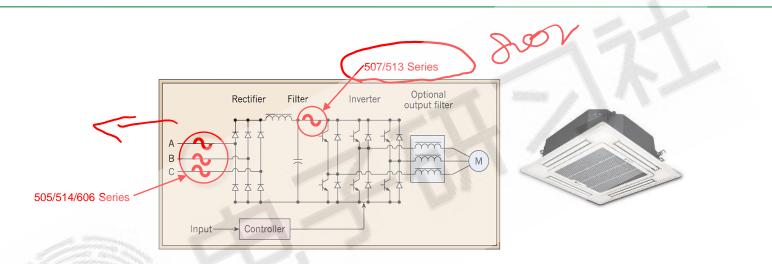




# Reed Switch and OC Protection Solutions



Expertise Applied | Answers Delivered




## **Reed Switch Standard Products**

| Standard<br>Products                                                            | Speed and<br>Direction                                                                                                                                                             | Safety                                                                                                            | Utilities and Fluid<br>Management                                                                                                                 |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Reed switches</li> <li>Reed relays</li> <li>Catalog sensors</li> </ul> | <ul> <li>Automatic transmission<br/>speed sensors</li> <li>Actuator position</li> <li>Gear shifter position</li> <li>Cam &amp; crank sensors</li> <li>Fan speed sensing</li> </ul> | <ul> <li>Seatbelt buckle and<br/>tension sensors</li> <li>Crash sensors</li> <li>Seat position sensing</li> </ul> | <ul> <li>Remote utility meter<br/>reading counters &amp;<br/>tamper detection</li> <li>Industrial sensors</li> <li>Fluid level sensors</li> </ul> |
| Reed Switches                                                                   | Reed                                                                                                                                                                               | Relays                                                                                                            | Sensors                                                                                                                                           |
| 🖊 Littelfuse                                                                    |                                                                                                                                                                                    |                                                                                                                   |                                                                                                                                                   |



#### **Commercial Air Conditioning Application**



- For commercial air conditioning application, the input current can be up to 40A/50A with single-phase or three-phase voltage, our 500Vac rated 505/514/606 series are good protection solutions at main input side
- The rectified voltage can be up to 650Vdc, our 650Vdc rated 507 series and 800Vdc rated 513 series are good solutions for the fan motor protection



### **AC Fuse Solutions**

|                   | 505 Series                   | 514 Series  | 606 Series  |      |
|-------------------|------------------------------|-------------|-------------|------|
| Photo             | 4 4                          |             |             |      |
| Fuse Dimensions   | 6x32mm                       | 6x32mm      | 10x32mm     | 2001 |
| Voltage Rating    | 500Vac/dc                    | 500Vac      | 500Vac      | SPON |
| Breaking Capacity | 30KA @500Vac<br>20KA @500Vdc | 5KA @500Vac | 2KA @500Vac |      |
| Current Rating    | c 🔊 us                       |             | 40-63A      |      |
| Agency Approval   | 1111                         |             |             |      |



## **606 Series – Product Overview**

#### **Product Family/Package**

- 10x32mm Cartridge Fuse Product Family
- Through-hole Fuse

#### **Series Ratings/Type**

- High voltage /current Cartridge Fuse in the smallest size
- 500Vac rated
- 40A 63A Current Rating
- 2.000A Interrupting current @ 500V
   ac
- -55°C to 125°C operating temperature

#### **Agency Approvals**

UL Recognized Component

#### Environmental Compliance

- RoHS Compliant
- Halogen free
- 100% Pb free

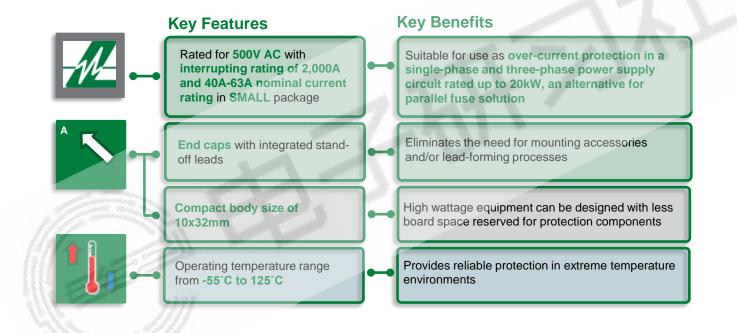
#### Packaging

- Tray
- Pack quantity = 500 pieces





## **Comparison of 606 Series with Competition**


|                                |                  | /                    |                 |
|--------------------------------|------------------|----------------------|-----------------|
|                                | LF 606<br>Series | Competitor           | Competito<br>r  |
| Product Photo/<br>Illustration | the state        |                      |                 |
| Footprint/Height               | 32 x Ø 10 mm     | 38 x Φ 10            | 38 x Ф 10 mm    |
| Current<br>Rating              | 40 A ~ 63 A      | Up to 30A            | Up to 30A       |
| Voltage Rating                 | 500VAC           | 500VAC               | 500VAC          |
| Interrupting Rating            | 2,000 A @ 500VA  | C 10,000A<br>@500VAC | 10,000A @500VAC |

#### What differentiates 606 Series?

- Higher current rating than
   competition
- Shorter length than 10 x 38 mm size competition



### **606 Series Features & Benefits**





### **DC Fuse Solutions**

|                   | 507 Series           | 513 Series                  |
|-------------------|----------------------|-----------------------------|
| Photo             | 14<br>10<br>10<br>10 | 4 12                        |
| Fuse Dimensions   | 6x32mm               | 6x32mm                      |
| Voltage Rating    | 650Vdc               | 800Vdc                      |
| Breaking Capacity | 150A @ 650Vdc        | 400A @ 800Vdc               |
| Current Rating    | 1-8A                 | 5-10A                       |
| Agency Approval   | c RL us              | c <b>PL</b> <sup>°</sup> us |



## **DC Fuse Solutions**

| Fuse Type                            | Series                       | Form Factor              | Voltage (V)               | Current (A)            |
|--------------------------------------|------------------------------|--------------------------|---------------------------|------------------------|
|                                      | 505                          | 6x32mm                   | 500Vac, Vdc               | 15A – 30A              |
|                                      | 504                          | 6x32mm                   | 420Vdc, 500Vac            | 25A – 30A              |
|                                      | 506                          | 6x32mm                   | 600Vdc                    | 15A – 20A              |
|                                      | 507                          | 6x32mm                   | 650Vdc                    | 1A – 8A                |
| Through Hole                         | 508                          | 6x32mm                   | 1000Vac, Vdc              | 315mA – 1A             |
|                                      | 477                          | 5x20mm                   | 400Vdc, 500Vac            | 0.5A – 16A             |
|                                      | 977                          | 5x20mm                   | 450Vdc, 500Vac            | 0.5A – 16A             |
|                                      | 487                          | 5x20mm                   | 420Vac, Vdc               | 8A – 20A               |
|                                      | 808                          | 4.65x8.9mm               | 250/350/450Vdc            | 2A – 5A                |
| Curries Menut                        | 885                          | 4.78x10.86mm             | 450/500Vdc                | 1A – 5A                |
| Surface Mount                        | 485                          | 4.5x12.1mm               | 600Vdc                    | 1A – 3.15A             |
| 41<br>41<br>41                       | 1.20                         |                          |                           | And And And            |
| 504/505/506/507/508 Series<br>6x32mm | 477/977/487 Series<br>5x20mm | 808 Series<br>4.65x8.9mm | 885 Series (4.78x10.86mm) | 485 Series (4.5x12.1mm |



## **High Voltage / Current New Products**

| Se           | eries       | Key Characteristics                         | Key Application Areas                              |
|--------------|-------------|---------------------------------------------|----------------------------------------------------|
| 505 Series   | 1.2         | 6x32mm, 15-30A, 30KA/500Vac                 | Charing Pile                                       |
| 514 Series   | 1.2         | 6x32mm, 1.6-12.5A, 5KA/500Vac               | Power Supply<br>E-meter                            |
| 606 Series   | Nº A        | 10x32mm, 40-63A, 2KA/500Vac                 | UPS<br>Industrial Air Conditioner<br>Charging Pile |
| 881 Series   | <b>\$</b>   | 12.5x10x7mm, 60-100A, 1.5KA/75Vdc           | Datacenter<br>Telecom<br>Power Tools/ESS/BBU       |
| 881F Series  |             | 12.5x10x7mm, 60-100A, 1.5KA/75Vdc           | Datacenter<br>Telecom<br>Power Tools/ESS/BBU       |
| 456SD Series | Jan Julan J | 12.2x4.5mm, 40-50A, 600A/75VDC, 100A/125VAC | Datacenter<br>Telecom<br>Power Tools/ESS/BBU       |
| 405 Series   |             | 5x20mm, 25A, 1KA/250Vac/dc                  | Datacenter                                         |
| 885 Series   |             | 10.9x4.8mm, 1-5A, 100A/500Vdc               | BMS<br>Motor Driver                                |
| 525 Series   | 1.          | 6x32mm, 15-30A, 10KA/305Vac, 10KA/450Vdc    | OBC C C C C C C C C C C C C C C C C C C            |



# New Product Update - New HazLoc Fuse!

|                                     |                            |                                        |                                         |                               |                               | A                               |
|-------------------------------------|----------------------------|----------------------------------------|-----------------------------------------|-------------------------------|-------------------------------|---------------------------------|
| Product<br>Series                   | 242                        | 259                                    | 259-UL913                               | 305                           | 304                           | 308                             |
| Dimensions<br>(mm)                  | <b>3 x 8</b> .4            | 8 x 13                                 | 8 x 13                                  | 9 x 15.6                      | 6 x 13.6 x 6                  | 5.4 x 3.6 x 3.8                 |
| Voltage Rating                      | 250 VAC/VDC                | 125 VAC/VDC                            | 125 VAC/VDC                             | 277 VAC/VDC                   | 277 VAC/VDC                   | 30VDC/24VAC                     |
| Current Rating<br>(I <sub>n</sub> ) | 40 mA –<br>250 mA          | 62 mA – 5 A                            | 62 mA – 5 A                             | 50 mA –<br>750 mA             | 50 mA –<br>750 mA             | 0.250A – 1.5A                   |
| Breaking<br>Capacity                | 4000 A @<br>250VAC/<br>VDC | 50 A @ 125<br>VAC<br>300 A @125<br>VDC | 50 A @ 125<br>VAC<br>300 A @<br>125 VDC | 1500 A @<br>277VAC/<br>VDC    | 1500 A @<br>277VAC/VDC        | 50A @ 24VDC<br>/<br>50A @ 30VDC |
| Certifications                      | UR, cUR (non-Ex)           | UR (non-Ex),<br>ATEX, IECEx            | UR (Ex),<br>ATEX, IECEx                 | UR + cUR (Ex),<br>ATEX, IECEx | UR + cUR (Ex),<br>ATEX, IECEx | UR + cUR (Ex),<br>ATEX, IECEx   |
|                                     |                            |                                        |                                         |                               |                               |                                 |

**Released!** 



## Low Voltage – Hazardous Location Applications

ROHS C WUS EX LECT

- Surface mount
- 30VDC/24VAC intrinsically safe fuse
- Specifically designed to operate in hazardous locations
- Limit the energy and temperature exposed during its operation
- Meet UL 913, ATEX and IECEx requirements
- Focus on Mobile





Mobile Computing & Communication

Gas Detection











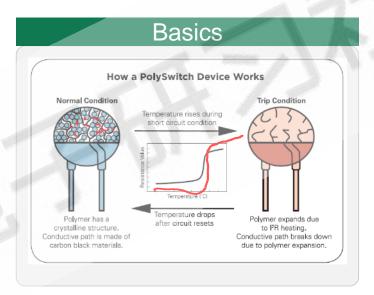











#### **PPTC Devices and Applications**

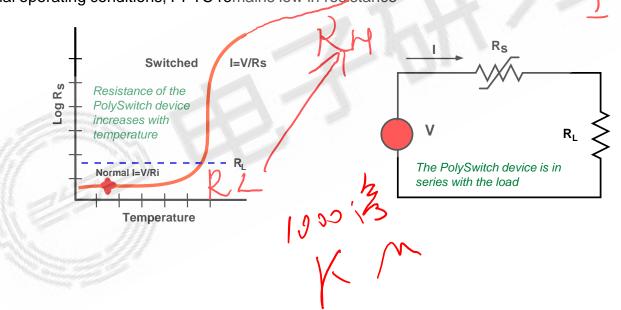


Expertise Applied | Answers Delivered

# **PPTC (PolySwitch) Devices**

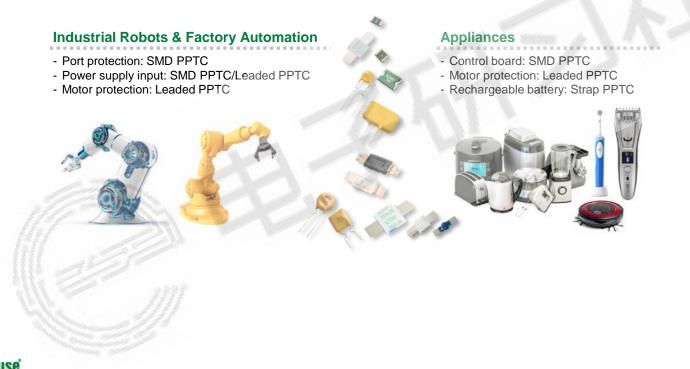
- Made from a composite of semi-crystalline polymer and conductive particles
- At normal temperature, the conductive particles form low-resistance networks in the polymer
- If the temperature rises above the device's switching temperature, either from high current through the part or from an increase in the ambient temperature, the crystallites in the polymer melt and become amorphous
- The increase in volume during melting of the crystalline phase separates the conductive particles resulting in a large non-linear increase in the resistance of the device.






# Why is a PPTC Useful?

PPTC resets when fault is removed, returns to low resistance


When fault occurs, the PPTC heats up and increases in resistance thereby protecting the equipment from fault

Under normal operating conditions, PPTC remains low in resistance





### **Industrial and Appliances**





## **SMD PPTC Devices**

#### "A" Series SMD Devices - tested to AECQ200

| Series      | Case size      | Voltage (Vdc) | Hold Current Range <sup>1</sup> | Temperature Range |
|-------------|----------------|---------------|---------------------------------|-------------------|
| AHS         | 2018/2920/3425 | 16V           | 0.8A~3A                         | -40°C~125°C       |
| ASMD        | 2920/3425      | 16~60V        | 0.23A~1.97A                     | -40°C~85°C        |
| femtoASMDC  | 1608 (0603)    | 12-15V        | 0.05A~0.10A                     | -40°C~85°C        |
| picoA SMDC  | 2012 (0805)    | 15V           | 0.10, 0.12A                     | -40°C~85°C        |
| nanoASMDC   | 3216 (1206)    | 13.2~60V      | 0.10A~0.50A                     | -40°C~85°C        |
| nanoA SMDCH | 3216 (1206)    | 16V           | 0.35A                           | -40°C~125°C       |
| microASMD   | 3225 (1210)    | 13.2~30V      | 0.05A~0.5A                      | -40°C~85°C        |
| miniA SMDC  | 4532 (1812)    | 12~60V        | 0.1A~2.6A                       | -40°C~85°C        |
| ASMDC       | 7555 (2920)    | 24~60V        | 0.3A~5.0A                       | -40°C~85°C        |

#### Standard SMD Devices

| Series            | Case size   | Voltage (Vdc) | Hold Current Range <sup>1</sup> | Temperature Range  |
|-------------------|-------------|---------------|---------------------------------|--------------------|
| 0402L             | 1005 (0402) | 6V            | 0.1A~0.5A                       | -40°C~85°C         |
| femtoSMDC / 0603L | 1608 (0603) | 6~24V         | 0.04A~0.5A                      | -40°C~85°C         |
| picoSMDC / 0805L  | 2012 (0805) | 6~30V         | 0.05A~1.10A                     | -40°C~85°C         |
| nanoSMDC / 1206L  | 3216 (1206) | 6~60V         | 0.05A~2.0A                      | -40°C~85°C         |
| microSMD / 1210L  | 3225 (1210) | 6~30V         | 0.05A~2.0A                      | -40°C~85°C         |
| miniSMDC / 1812L  | 4532 (1812) | 6~60V         | 0.1A~3.0A                       | -40°C~8 <b>5°C</b> |
| 2016L             | 5040 (2016) | 6~60V         | 0.3A~5.0A                       | -40°C~85°C         |
| midSMD            | 5050 (2018) | 6~60V         | 0.3A~2.0A                       | -40°C~85°C         |
| SMDC / 2920L      | 7555 (2920) | 6~60V         | 0.3A~7.0A                       | -40°C~85°C         |
| SMD               | 7555 (2920) | 6~60V         | 0.3A~3.0A                       | -40°C~85°C         |
| SMD2              | 8763 (3425) | 15~33V        | 1.5A~2.5A                       | -40°C~85°C         |
| Oil Resistant     | Varies      | 6~30V         | 0.1A~1.25A                      | -40°C~125°C        |

#### Features

- Wide range of resettable overcurrent devices designed for general electronic and automotive markets
- Wide range of cases sizes and ratings, meet applicable industry standards

#### **Benefits**

- Selection of over 200 different standard SMD models
- Devices compatible with highvolume electronic assembly
- RoHS compliant, Halogen-free





<sup>1</sup> Hold current at room temperature



# **Radial Leaded PPTC Devices**

#### "A" Series Devices - tested to AECQ200

| Series | Voltage (Vdc) | Hold Current Range <sup>1</sup> | Temperature Range |
|--------|---------------|---------------------------------|-------------------|
| AGRF   | 16V           | 4A~14A                          | -40°C~85°C        |
| AHRF   | 30V           | 0.5A~1A                         | -40°C~125°C       |
| AHRF   | 16V           | 2A~15A                          | -40°C~125°C       |
| AHEF   | 32V           | 0.5A~10A                        | -40°C~125°C       |

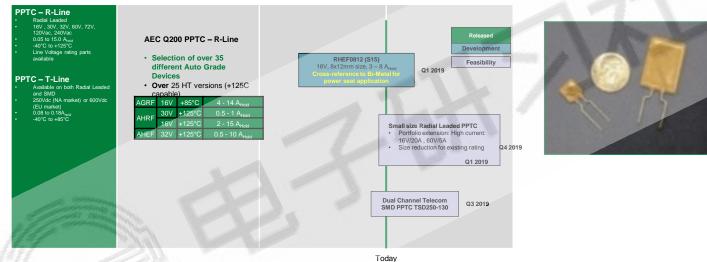
#### Standard "R" Series Devices

| Series | Voltage (Vdc) | Hold Current Range <sup>1</sup> | Temperature Range |
|--------|---------------|---------------------------------|-------------------|
| RXEF   | 60~70V        | 0.05A~3.75A                     | -40°C~85°C        |
| RKEF   | 60V           | 0.5A~5A                         | -40°C~85°C        |
| RUEF   | 30V           | 0.9A~9A                         | -40°C~85°C        |
| RHEF   | 16~30V        | 0.5A~15A                        | -40°C~85°C        |
| RGEF   | 16V           | 2.5A~14A                        | -40°C~85°C        |
| RUSBF  | 6~16V         | 0.75A~2.5A                      | -40°C~85°C        |
| LVR    | 240V          | 0.05A~2A                        | -40°C~85°C        |

#### Features

- Wide range of resettable overcurrent devices designed for the general electronic and automotive markets
- Wide range of form factors and termination methods
- Products meet applicable industry standards

#### **Benefits**


- Selection of "A series" models for automotive
- Devices compatible with high-volume electronic assembly
- RoHS compliant; A series parts tested to AECQ200

| Ø <u>5</u> |
|------------|
|            |





### **Radial Leaded & Telecom PPTC Devices**



#### New product development:

- Focus on automotive motor protection to compete against Bi-metal
- Small size
- Portfolio extension





### **Design & Electrical Key Features for Mega 48V**

#### High Current Fuses



### COLOR CODING SEE CHART

Operating Temperature Range: Housing Material: Terminals: Mounting Torque M6: Mounting Torque M8: Open State Resistance (after fuse opening)

2500A @ 70 VDC 70 VDC -40°C to + 125°C PPA-GF33 ETP Copper (Tin plated) 9Nm+/-1Nm 20Nm+/-1Nm >1M0hm ISO 20934 - Type SE51

Features and special requirements:

- based on standard MEGA Fuse (Same dimensions)
- ➤ T/C characteristic acc. ISO 8820-5
- > Breaking Capacity:
- Isolation Resistance:
- if coding necessary pitch = 54 mm



#### MEGA® High Performance Fuse Rated 70V-SF51

The MEGA® 70V-SF51 High Performance (HP) Fuse is designed for high current circuit protection up to 500A with "Diffusion Pill Technology." The MEGA 70V HP features 1MOhm Open State Resistance after fuse opening to guarantee safe interruption at any voltage up to 70V. The MEGA® 70V HP Fuse is ideal for battery and alternator protection application and other heavy gauge cables requiring ultra-high current protection.

#### Specifications

Interrupting Rating: Voltage Rating: According to:

~2500A @(>70V

>1MOhm





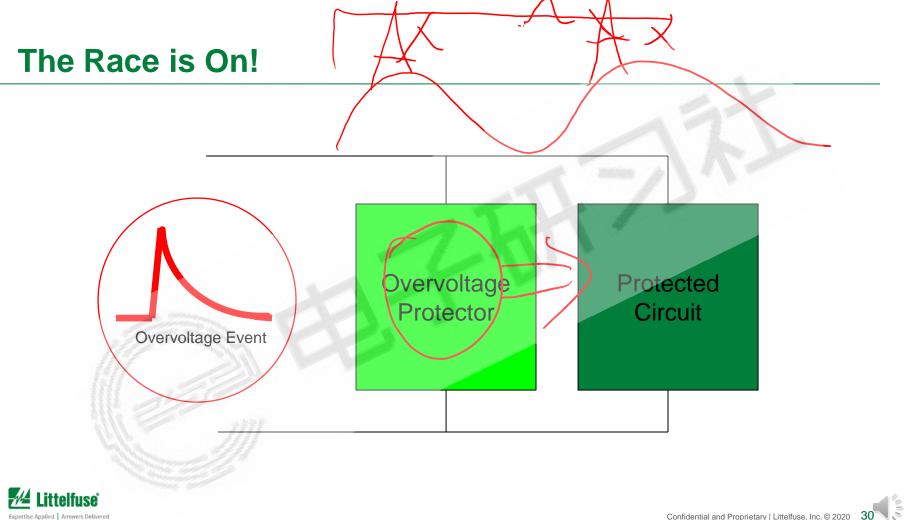






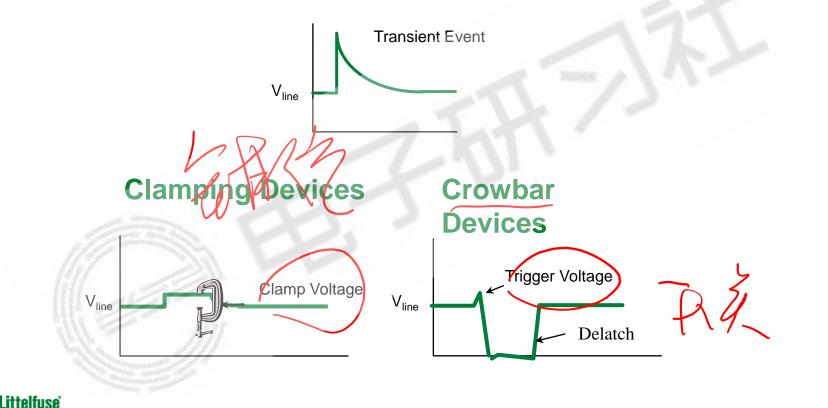








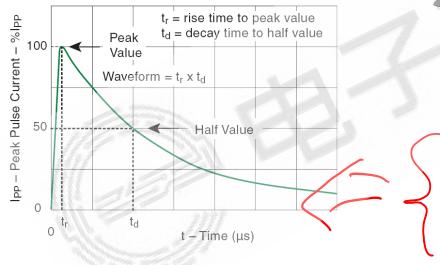

#### **OV Protection Solutions**

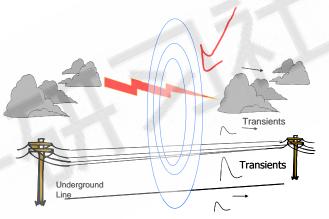



Expertise Applied | Answers Delivered



Expertise Applied Answers Delivered


### **Clamping Devices vs Crowbar Devices**






## **Key Parameters: Peak Pulse Power**

- Double Exponential Waveforms
  - Simulate induced lightning events
  - Rise time & decay time in microseconds





8 x 20 (IEC 61000-4-5) 10 x 1000 (Telephone) 10/350(Telecom) 10/700



















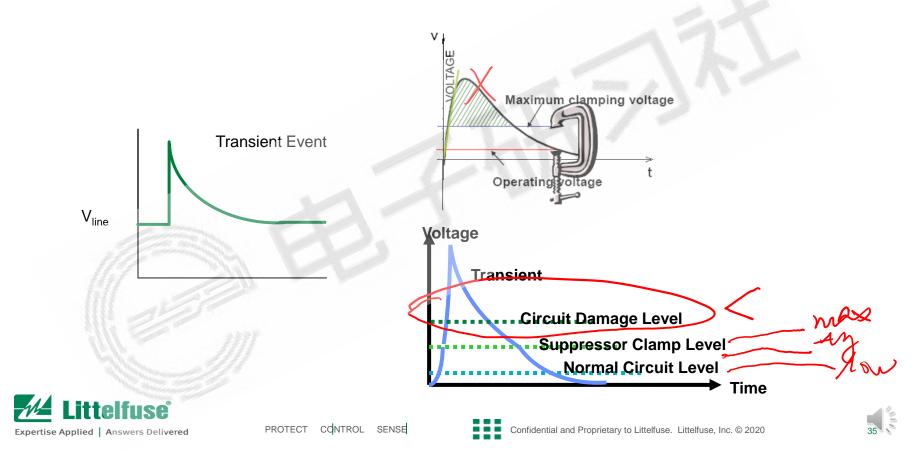


# TVS Diode

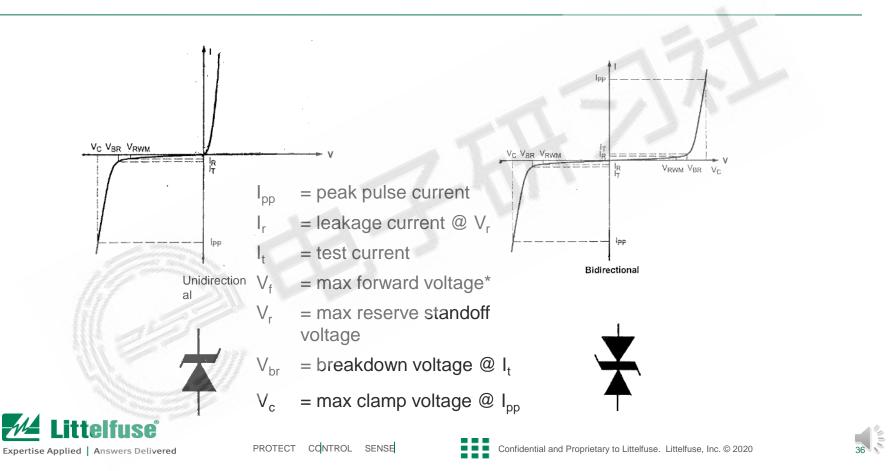


Expertise Applied | Answers Delivered

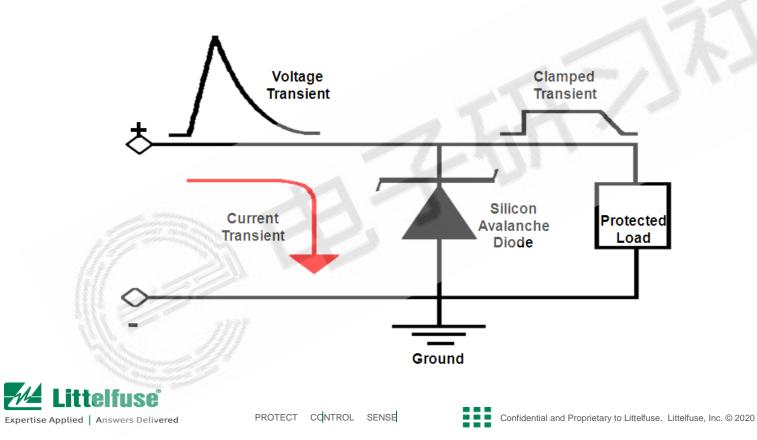
# Why are Transients of Concern?


- Component miniaturization has resulted in increased sensitivity to electrical stress
- Microprocessors have structures and conductive paths which cannot handle high currents from ESD transients
- They operate at very low circuit voltages
- Transient voltages must be controlled to prevent device interruption or failure
- Sensitive microprocessors are prevalent in a wide range of devices such as:
  - Home appliances
  - Industrial controls
  - Consumer electronics
  - Data processing equipment
  - Telecommunications
  - Automotive electronic systems
  - Toys



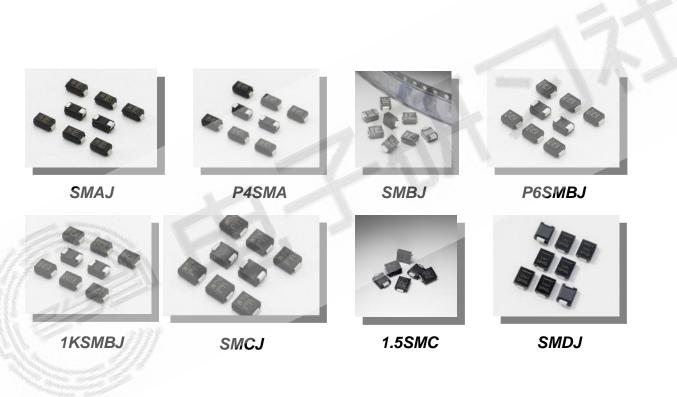






#### **TVS Clamping Devices**



### **Bidirectional vs Unidirectional**




#### **TVS Transient Protection**



37

#### **Surface Mount Product Offering**





# **Axial Leaded Product Offering**

#### Much compact in design

- 10X Smaller size than traditional SPD module
- Easy for layout and assembly/ installation
- Much lighter (AK15 is around 10gm) than heavy SPD module.

#### Much longer in lifetime

NO wear-out mechanism over multiple surge events, temperature variance and lifetime MTBF: years.

#### Simply perform better

 Foldbak technology enable precise clamping AK Vclamp = 2 X Vstandoff.

Competition MOV Vcl over 3X Vv operating

 TVS Diode instant response in a few nS compared to MOV technology tens nS Sec

#### Wider operating temperature

- AK: -55degree C to 150 degree C
- MOV: -40 degree C to 85 degree C

















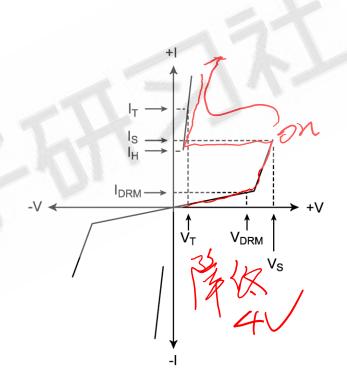






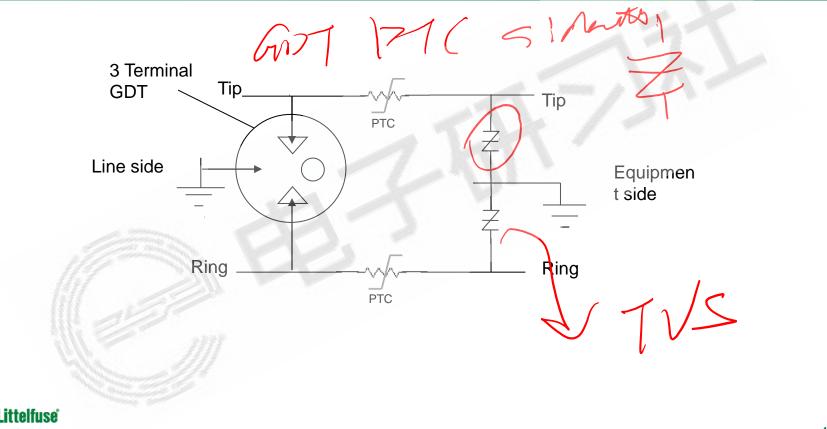
### Sidactor




Expertise Applied | Answers Delivered



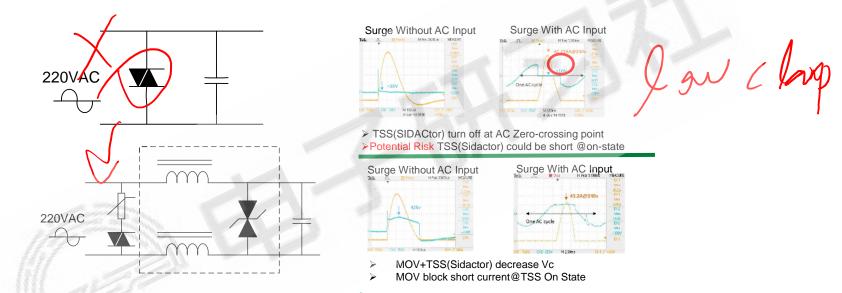
### **IV Characteristics & parameters**


- V<sub>DRM</sub> = Working Voltage
   > Peak (DC) operating voltage of protected circuit.
- V<sub>s</sub> = Protection Voltage
   < Withstand voltage of protected circuit.</li>
- I<sub>H</sub>(MIN) = Holding current
   > Max circuit DC current of protected circuit.
- V<sub>T</sub> = Turn-on Voltage
  - > Voltage while turned on.

IDEAL protector: VDRM = VS But no one can make it.






### **MDF (Main Distribution Frame)**



Expertise Applied Answers Delivered

-11-

### **TSS Crowbar Solution for Power**



Note:TSS Leakage <<MOV Most Open Volt on TSS Possible TSS malfunction Cause MOV Conduct on Short Current Damage MOV;Thus,Make Cetain Sidactor block timely is significant ;MOV Vnom >TSS Vs gurrantee TSS close





















# New High Surge MLV



Expertise Applied | Answers Delivered

### **275Vac Surface Mount MLV Device**

#### SMD VARISTOR – Data Sheet Rev 1

#### Littelfuse Part Number: V275MLA0805NS

#### **Device Ratings and Characteristics**

|               |                                         |      | Maximum Ratings (+12                                   | 13 3                                    | Characteristics (+25°C) |                               |                               |  |  |
|---------------|-----------------------------------------|------|--------------------------------------------------------|-----------------------------------------|-------------------------|-------------------------------|-------------------------------|--|--|
|               | Maxir<br>Contin<br>Working              | uous | Maximum<br>Non-repetitive<br>Surge Current<br>(8/20µs) | Maximum Clamping<br>Voltage<br>(8/20µs) | Test                    | l Voltage<br>Current<br>nA DC | Typical Capacitance<br>@ 1KHz |  |  |
| Part Number   | V <sub>M (DC)</sub> V <sub>M (AC)</sub> |      | ITM                                                    | V <sub>c</sub> @ 1A                     | V <sub>N (DC)</sub>     | V <sub>N (DC)</sub>           | С                             |  |  |
|               | (V)                                     | (V)  | (A)                                                    | (V)                                     | Min (V)                 | Max (V)                       | pF                            |  |  |
| V275MLA0805NS | 350                                     | 275  | 100                                                    | 705                                     | 387 473                 |                               | 45                            |  |  |

Notes:

- 1. Maximum Leakage at +25°C:50uA @80%Vn
- These values represent those of discreetly tested units only, i.e. 'off the reel' before boardmount. Littelfuse cannot be accountable for localized board effects that may cause surface interactions resulting in leakage levels greater than the maximum after boardmount.
- 3. Operating Ambient Temperature Range (TA): -40 °C to +125 °C
- 4. UL recognized, agency file numer E320116
- 5. RoHS complaint and lead free



- Maximum working voltage 275Vac, 0805 inch compact size,
- In rating 100A, 15 pulses
- UL recognized, UL documentation No. E320116.
- RoHS compliance and leadfree.
- Main application: GFCI



# 16Vdc, 50J high load dump rating MLV Device

#### SMD VARISTOR – Data Sheet, Rev1, Oct 14th 2019

#### Littelfuse Part Number: V16AUMLA2220NS

#### **Device Ratings and Characteristics**

|                |                                             | N                               | laximum Rating                    | (+125°C)                                   |                                                        | Characteristics (+25°C)  |                                 |       |  |  |
|----------------|---------------------------------------------|---------------------------------|-----------------------------------|--------------------------------------------|--------------------------------------------------------|--------------------------|---------------------------------|-------|--|--|
| Part Number    | Maximum<br>Continuous<br>Working<br>Voltage | Jump start<br>voltage<br>(5min) | Load dump<br>energy<br>(10 pulse) | Maximum<br>Clamping<br>Voltage<br>(8/20µs) | Maximum<br>Non-repetitive<br>Surge Current<br>(8/20µs) | Nomina<br>Test (<br>@ 1r | Typical<br>capacitance<br>@1KHz |       |  |  |
|                | V <sub>M (DC)</sub>                         | VJUMP                           | WTM                               | Vc @ 10A                                   | ITM                                                    | VN (DC)                  | VN (DC)                         | Ср    |  |  |
|                | (V)                                         | (V)                             | (J)                               | (V)                                        | (A)                                                    | Min (V)                  | Max (V)                         | pF    |  |  |
| V16AUMLA2220NS | 16                                          | 24.5                            | 50                                | 42                                         | 5000                                                   | 21.6                     | 26.4                            | 25000 |  |  |

Notes:

 These values represent more of discreetly tested units only, i.e. 'off the reel' before boardmount. Littelfuse cannot be accountable for localized board effects that may cause surface interactions resulting in leakage levels greater than the maximum after boardmount.

- 2. Operating Ambient Temperature Range (TA): -55°C to +125°C
- 3. Max leakage current 100µA@16V DC
- 4. AEC-Q200 qualified
- 5. S package=500pcs/reel
- 6. RoHS complaint

#### Features:

- Maximum working voltage 16Vdc suitable for 12Vdc system. 2220 SMT packaging
- ISO 7637-2 5a test passed (40J) Us: 65V, R: 0.5Ω, Td:400ms.,
- ISO 7637-2 5a test passed (50J) Us: 87V, R: 0.5Ω, Td:400ms
- JASO A A-1, Vp: 70 V, R: 0.8Ω, <u>t</u>=200ms test passed
- RoHS compliance and lead-free.

#### Main application:

Car LED Front Lighting



# 65Vdc, 4500A 8/20us Surge rating MLV Device

#### SMD VARISTOR -Data Sheet, Rev1, July 19th 2019

#### Littelfuse Part Number: V65MLA2220NS

#### **Device Ratings and Characteristics**

|              |                     | M                          | laximum Ratings (+125°C)                               | E                                       | Characte                                    | Characteristics (+25°C) |  |  |  |
|--------------|---------------------|----------------------------|--------------------------------------------------------|-----------------------------------------|---------------------------------------------|-------------------------|--|--|--|
| Part Number  | Wor                 | Continuous<br>king<br>tage | Maximum<br>Non-repetitive Surge<br>Current<br>(8/20µs) | Maximum Clamping<br>Voltage<br>(8/20µs) | Nominal Voltage<br>Test Current<br>@ 1mA DC |                         |  |  |  |
|              | V <sub>M (DC)</sub> | V <sub>M (AC)</sub>        | ITM                                                    | V <sub>c</sub> @ 10A                    | V <sub>N (DC)</sub>                         | V <sub>N (DC)</sub>     |  |  |  |
|              | (V) (V)             |                            | (A)                                                    | (V)                                     | Min (V)                                     | Max (V)                 |  |  |  |
| V65MLA2220NS | 65                  | 50                         | 4500                                                   | 135                                     | 73.8                                        | 90.2                    |  |  |  |

Notes:

 These values represent those of discreetly tested units only, i.e. 'off the reel' before boardmount. Littelfuse cannot be accountable for localized board effects that may cause surface interactions resulting in leakage levels greater than the maximum after boardmount.

- 2. Operating Ambient Temperature Range (TA): -55°C to +125°C
- 3. Typical capacitance 4800pF@1KHz
- 4. S=500pcs/reel
- 5. Max leakage current 100uA@80% Vn
- 6. Withstand 3000A, 10 pulses@8/20us waveform





- Maximum working voltage 65Vdc suitable for 48Vdc system, 2220 inch size for Surface Mount,
- Can withstand 4500A 8/20us nonrepetitive surge;
- RoHS compliance and lead-free
- Main application: Telecom/Base Station





















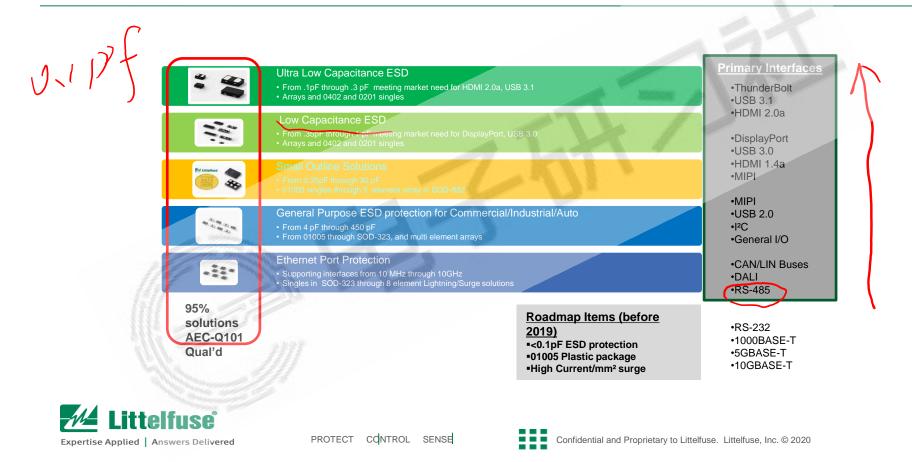
# TVS Diode Array ESD and EOS



Expertise Applied | Answers Delivered

## **TVS Diode Array Product Line**




- Primary Design Location → Chubei, Taiwan
- Characterization and Qual → Wuxi
- Sales Related Assets at major sites in Asia
- "Ideal" customer is they who value performance over price
- We strive to provide high performance solutions at an acceptable price
- We are not a low-priced solution, we can cross, but typically we cannot offer price down vs. incumbents





# **Diode Array Broad Category Solutions**

(default product qual through Automotive grade)



### **RF SOD-323 Solutions**

SPYOXX

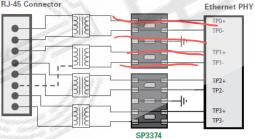
|                 | SP4020-01FTG    | SP4020-01FTG-C  | SP4021-01FTG    | SP4021-01FTG-C  | SP4208-01FTG    | SP4208-01FTG-C | SP4022-01FTG     | SP4022-01FTG-C | SP4023-01FTG   | SP4023-01FTG-C | SP4024-01FTG   | SP4024-01FTG-C |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------|------------------|----------------|----------------|----------------|----------------|----------------|
| Work Voltage    | -0.7 to 3.3V    | -3.3 to 3.3V    | -0.7 to 5.0V    | -5.0 to 5.0V    | -0.7 to 9.5V    | -9.5 to 9.5V   | -0.7 to 12V      | -12 to 12V     | -0.7 to 15V    | -15 to 15V     | -0.7 to 24V    | -24 to 24V     |
| Breakdown       | <-1.0 and >3.5V | <-3.5 and >3.5V | <-1.0 and >6.3V | <-6.3 and >6.3V | <-1.0 and >9.5V | <-9.5 >9.5V    | <-1.0 and >13.3V | <-13.3 >13.3V  | <-1.0 and >16V | <-16 and >16V  | <-1.0 and >26V | <-26 and >26V  |
| Package         | SOD-323         | SOD-323         | SOD-323         | SOD-323         | SOD-323         | SOD-323        | SOD-323          | SOD-323        | SOD-323        | SOD-323        | SOD-323        | SOD-323        |
| Surge (8/20 ns) | 30 Amps         | 30 Amps         | 25 Amps         | 25 Amps         | 30 Amps         | 30 Amps        | 15 Amps          | 15 Amps        | 12 Amps        | 12 Amps        | 7Amps          | 7Amps          |
| Nominal Cap.    | 5 pF            | 2.5 pF          | 2.5 pF          | 2.5 pF          | 3.0 pF          | 3.0 pF         | 1.3 pF           | 1.3 pF         | 1.3 pF         | 1.3 pF         | 1.3 pF         | 1.3 pF         |
| Auto Qual       | AEC-Q101        | AEC-Q101        | AEC-Q101        | AEC-Q101        | AEC-Q101        | AEC-Q101       | AEC-Q101         | AEC-Q101       | AEC-Q101       | AEC-Q101       | AEC-Q101       | AEC-Q101       |
| Availability    | Production      | Production      | Production      | Production      | Production      | Production     | Production       | Production     | Production     | Production     | Production     | Production     |

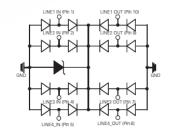
SD

Very popular parts, because they are single channel they are easy to route, and easy to place
 Historically used on DSL ethernet lines, morphed into automotive protecting CAN and LIN buses

•Low capacitance

•Excellent Clamp performance


•Automotive grade components available as AQ prefix




### **SP3374NUTG for Ethernet**

| Parameter                       | Symbol           | Test Conditions                                                                                           |      | Тур  | Max  | Units |
|---------------------------------|------------------|-----------------------------------------------------------------------------------------------------------|------|------|------|-------|
| Reverse Standoff Voltage        | V <sub>RWM</sub> | I <sub>R</sub> ≤1µA                                                                                       |      |      | 3.3  | V     |
| Reverse Leakage Current         | I <sub>R</sub>   | V <sub>RVM</sub> = 3.3V, T = 25°C                                                                         |      | 0.1  | 0.5  | μА    |
| Snap Back Voltage               | V <sub>SB</sub>  | I <sub>sa</sub> = 50mA                                                                                    | 2.8  |      |      | V     |
|                                 |                  | I <sub>pp</sub> = 1A, t <sub>p</sub> = 8/20µs<br>Any I/O to Ground                                        |      |      | 5.5  | 13    |
|                                 |                  | I <sub>pp</sub> = 10A, t <sub>p</sub> = 8/20µs<br>Any I/O to Ground                                       | 2.12 |      | 10.5 |       |
| Clamp Voltage                   | V <sub>c</sub>   | I <sub>pp</sub> = 25A, t <sub>2</sub> = 8/20µs<br>Any I/O to Ground                                       | 1    |      | 18.0 | V     |
|                                 |                  | $I_{pp} = 40A, t_p = 8/20 \mu s$ Line-to-Line <sup>1</sup> , two I/O Pins connected together on each line |      |      | 25.0 |       |
| Dynamic Resistance <sup>2</sup> | Row              | TLP, tp=100ns, Any I/O to Ground                                                                          |      | 0.15 |      | Ω     |
| FOR MELLING MALLING             |                  | IEC61000-4-2 (Contact)                                                                                    | ±30  |      |      | kV    |
| ESD Withstand Voltage           | VESD             | IEC61000-4-2 (Air)                                                                                        | ±30  |      |      | kV    |
| Diode Capacitance               | C VO to CND      | Between I/O Pins and Ground<br>V <sub>R</sub> = 0V, f = 1MHz                                              |      | 3.5  | 5.0  | pF    |
|                                 | C NO 10 UO       | Between VO Pins<br>V <sub>e</sub> = 0V, f = 1MHz                                                          |      | 1.7  |      | pF    |

**RJ-45** Connector









**Littelfuse** Expertise Applied Answers Delivered

# SP2555NUTG for Ethernet



|  | /laximum |  |
|--|----------|--|
|  |          |  |
|  |          |  |

| Aboolate III    |                                           |            |       |               |        |
|-----------------|-------------------------------------------|------------|-------|---------------|--------|
| Symbol          | Parameter                                 | Value      | Units |               | 000    |
| I <sub>pp</sub> | Peak Current (t <sub>p</sub> =8/20µs)     | 45         | A     |               | 16)500 |
| P <sub>pk</sub> | Peak Pulse Power (t <sub>p</sub> =8/20µs) | 1000       | W     | 6             |        |
| T <sub>op</sub> | Operating Temperature                     | -40 to 125 | °C    | Survey of the |        |
| T               | Storage Temperature                       | -55 to 150 | °C    |               |        |

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

|    |                 | _ | _                 |      | Ethernet PHY |
|----|-----------------|---|-------------------|------|--------------|
| •  | BIB             | _ |                   |      | TP0+<br>TP0- |
| •— | pild            |   |                   | -10- | 170-         |
| •  | BIIE            |   | the second second | P.   | TP1+         |
| •  | - <u>RIIS</u> - |   |                   |      | TP1-         |
|    | BIIE            |   |                   |      | TP2+         |
|    | 3118            |   |                   | h.   | 172-         |
| •  | Ric             |   |                   | -li- | TP3+         |
| -  | BIB             | - | 502               |      | 173-         |



| Parameter                       | Symbol                  | Test Conditions                                                                                                                             |     |     |     | Units |
|---------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-------|
| Reverse Standoff Voltage        | V <sub>RWM</sub>        | I <sub>R</sub> ≤ 1μA                                                                                                                        |     | ĺ   | 2.5 | V     |
| Reverse Leakage Current         | I <sub>R</sub>          | V <sub>BWM</sub> = 2.5V, T = 25°C                                                                                                           |     | 0.1 | 0.5 | μΑ    |
| Snap Back Voltage               | V <sub>sb</sub>         | I <sub>se</sub> = 50mA                                                                                                                      | 2.0 |     |     | V     |
|                                 |                         | $I_{pp} = 1A$ , $t_p = 8/20\mu s$ , Any I/O to Ground                                                                                       |     | 4.5 |     |       |
|                                 |                         | $I_{pp} = 10A$ , $t_p = 8/20\mu s$ , Any I/O to Ground                                                                                      |     | 7.5 |     |       |
| Clamp Voltage                   | Vc                      | $I_{pp}$ = 25A, $t_p$ = 8/20µs, Any I/O to Ground                                                                                           |     | 12  |     | v     |
|                                 | C                       | I <sub>pp</sub> = 45A, t <sub>p</sub> = 8/20μs,<br>Line-to-Line <sup>1</sup> , <sup>1</sup> two I/O Pins<br>connected together on each line |     | 19  |     |       |
| Dynamic Resistance <sup>2</sup> | R                       | TLP, t <sub>p</sub> =100ns, Any I/O to Ground                                                                                               |     | 0.1 |     | Ω     |
| ESD Withstand Voltage           | M                       | IEC 61000-4-2 (Contact)                                                                                                                     | ±30 |     |     | kV    |
| ESD Withstand Voltage           | V <sub>ESD</sub>        | IEC 61000-4-2 (Air)                                                                                                                         | ±30 |     |     | kV    |
| Diode Capacitance               | C <sub>VD to GND</sub>  | Between I/O Pins and Ground $V_{_{\rm H}} = 0V$ , f = 1MHz                                                                                  |     | 2.5 |     | pF    |
|                                 | C <sub>I/D to I/D</sub> | Between I/O Pins<br>V <sub>B</sub> = 0V, f = 1MHz                                                                                           |     | 1.2 |     | pF    |



#### **SP3384NUTG for Ethernet**



Ethernet PHY

**RJ-45** Connector

.

| Ipp             | Peak Current (t <sub>p</sub> =8/20µs)     | 15         | A  |
|-----------------|-------------------------------------------|------------|----|
| P <sub>Pk</sub> | Peak Pulse Power (t <sub>p</sub> =8/20µs) | 500        | W  |
| T <sub>op</sub> | Operating Temperature                     | -40 to 125 | °C |
| T               | Storage Temperature                       | -55 to 150 | °C |

Absolute Maximum Ratings

Symbol

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the component. This is a stress only rating and operation of the component at these or any other conditions above those indicated in the operational sections of this specification is not implied.

|                                    | Symbol             | Test Conditions                              |     |     | Max | Units |
|------------------------------------|--------------------|----------------------------------------------|-----|-----|-----|-------|
| Reverse Standoff Voltage           | VRWM               | $I_R = 1 \mu A$                              |     |     | 3.3 | V     |
| Breakdown Voltage                  | V <sub>BR</sub>    | I <sub>R</sub> = 1mA                         |     | 9   |     | V     |
| Reverse Leakage Current            | ILEAK              | V <sub>R</sub> =3.3V                         |     | 0.1 | 0.5 | μA    |
| Snap Back Voltage                  | V <sub>SB</sub>    | I <sub>se</sub> = 50mA                       |     | 2   |     | V     |
| Clamp Voltage <sup>1</sup>         | N/                 | I <sub>pp</sub> =1A, t <sub>p</sub> =8/20µs  |     | 3   |     | V     |
| clamp voltage.                     | Vc                 | I <sub>pp</sub> =15A, t <sub>p</sub> =8/20µs |     | 11  |     | V     |
| Dynamic Resistance <sup>2</sup>    | R <sub>DYN</sub>   | TLP, t <sub>p</sub> =100ns                   |     | TBD |     | Ω     |
| 50D M/04-1                         | N                  | IEC 61000-4-2 (Contact Discharge)            | ±30 |     |     | kV    |
| ESD Withstand Voltage <sup>1</sup> | V <sub>ESD</sub>   | IEC 61000-4-2 (Air Discharge)                | ±30 |     |     | kV    |
| Diode Capacitance <sup>1</sup>     | C <sub>VO-VO</sub> | Reverse Bias=0V, f=1MHz                      |     | 0.5 |     | pF    |

Notes:

1Parameter is guaranteed by design and/or component characterization.

2 Transmission Line Pulse (TLP) test setting : Std.TDR(50Ω),tp=100ns, tr=0.2ns ITLP and VTLP averaging window: start 1=70ns to end t2=80ns



Confidential and Proprietary | Littelfuse, Inc. © 2020 54









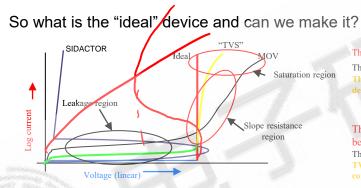








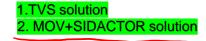



# SIDACtor + MOV Lower Clamping



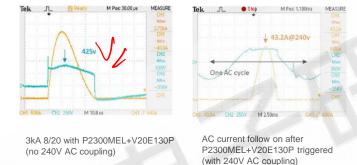


Expertise Applied | Answers Delivered


#### **Littelfuse Protection Options**



The "Ideal device" would have no leakage current in the normal operating region.


MOV devices have non-linear voltage dependant leakage. **TVS device have fixed non-dependant leakage**  The 'Ideal' continues vertical. The MOV becomes limited by R(on). The TVS becomes limited by current density.

The Ideal would be a vertical conduction relationship between voltage and current. The MOV has a non-linear slope tending towards resistive. TVS are also non-linear, having a more vertical slope due to avalanche conduction.





#### SIDACtor +MOV for Ultra Low I<sub>R</sub> and V<sub>CL</sub> Example : Surge Waveform SIDACtor + MOV



Lower clamping voltage ~425V at 3kA 8/20 surge current compare to

Lower AC follow on current 43.2A compared to single SIDACtor 278A.

> SIDACtor turns off once AC voltage drops below the MOV breakdown voltage.

single 275V MOV solution ( >900V by datasheet curve).

SIDACtorVs+MOVVc AC PeakVoltage MOVVc

Power Circuit

SIDACtor®

Component

+ MOV





## **Test result of Leakage current and Clamping Voltage**

|   |                       |             |         |        |          |           |       |         |       |                        | 0           | <b>A</b>    |              |              |               |
|---|-----------------------|-------------|---------|--------|----------|-----------|-------|---------|-------|------------------------|-------------|-------------|--------------|--------------|---------------|
|   |                       |             | r@800V  |        |          |           | lr@41 | OV DC(u | (A)   | 6kV<br>@1.2µs/50µ<br>s | 50          |             | V DC(µA)     |              |               |
|   |                       |             | 0000    |        | efore Su | Irge @ µA |       |         | 5     | After Surge @ µA       |             |             |              |              |               |
|   |                       | lr+<br>@25C |         |        |          |           |       |         |       |                        | lr+<br>@25C | lr-<br>@25C | lr+<br>@125C | Ir-<br>@125C |               |
| # | 1 V275LA40BP+P3800MEL | 589.74      | 395.78  | 188.76 | 184.71   | 0.30      | 0.22  | 22.93   | 23.94 | 800                    | 285         | 242         | 324          | 314          | +5/-5 strikes |
| # | 2 V275LA40BP+P3800MEL | 458.18      | 587.73  | 195.66 | 174.38   | 0.26      | 0.18  | 25.08   | 24.89 | 875                    | 357         | 419         | 249          | 291          | +1/-1strike   |
| # | 3 V275LA40BP+P3800MEL | 1306.96     | 1379.91 | 219.68 | 185.62   | 0.24      | 0.18  | 25.28   | 25.06 | 860                    | 1008        | 786         | 249          | 281          | +1/-1strike   |
| # | 1 V300LA40BP+P3800MEL | 3.57        | 3.12    | 188.81 | 211.47   | 0.29      | 0.21  | 17.50   | 17.67 | 875                    | 25          | 23          | 205          | 232          | +5/-5 strikes |
| # | 2 V300LA40BP+P3800MEL | 3.18        | 2.87    | 181.02 | 203.66   | 0.28      | 0.21  | 15.65   | 15.81 | 930                    | 13          | 16          | 187          | 211          | +1/-1strike   |
| # | 3 V300LA40BP+P3800MEL | 1.79        | 1.63    | 219.27 | 203.07   | 0.35      | 0.23  | 7.32    | 7.31  | 950                    | 13          | 14          | 208          | 193          | +1/-1strike   |
| # | 1 V420LA40CP          | >15mA       | >15mA   | >15mA  | >15mA    | 0.74      | 0.52  | 11.38   | 11.66 | 1330                   | 419 900     | 463 000     | 444,900      | 449 200      | +5/-5 strikes |
| # |                       | >15mA       | 38      |        |          |           |       | 27.78   | 28.48 |                        |             |             | 379.600      | <u>_</u>     | +1/-1strike   |
| # |                       | >15mA       | 1       |        |          |           |       | 24.82   | 25.43 | 1290                   |             | ,           | 361.000      | (            | +1/-1strike   |

## Voltage at 1mA before and after Surge

|    |                     | Vz@1mA(V)    |         |          |          | Vz@1mA(V)   |           |       |          |
|----|---------------------|--------------|---------|----------|----------|-------------|-----------|-------|----------|
|    |                     | Before Surge |         |          |          | After Surge |           |       |          |
|    |                     |              |         |          |          |             | Vz+@125   |       |          |
|    |                     | Vz+@25C      | Vz-@25C | Vz+@125C | Vz-@125C | Vz+@25C     | Vz-@25C C |       | Vz-@125C |
| #1 | V275LA40BP+P3800MEL | 805.8        | 807.5   | 855.9    | 855.3    | 812.8       | 812.9     | 854.3 | 851.8    |
| #2 | V275LA40BP+P3800MEL | 808.3        | 805.2   | 853.8    | 857.5    | 811.9       | 808.4     | 856.9 | 852.2    |
| #3 | V275LA40BP+P3800MEL | 800.7        | 799.0   | 849.1    | 852.0    | 803.2       | 803.3     | 848.4 | 848.9    |
| #1 | V300LA40BP+P3800MEL | 845.0        | 842.6   | 893.9    | 891.4    | 845.9       | 842.8     | 885.4 | 880.4    |
| #2 | V300LA40BP+P3800MEL | 845.5        | 843.4   | 896.2    | 893.3    | 843.6       | 840.8     | 881.5 | 877.0    |
| #3 | V300LA40BP+P3800MEL | 845.3        | 847.1   | 897.1    | 898.2    | 849.9       | 850.6     | 894.6 | 894.0    |
| #1 | V420LA40CP          | 695.5        | 696.3   | 694.6    | 694.9    | 699.7       | 702.2     | 688.4 | 691.3    |
| #2 | V420LA40CP          | 675.9        | 676.5   | 660.3    | 660.6    | 678.8       | 678.7     | 660.8 | 660.4    |
| #3 | V420LA40CP          | 671.7        | 672.8   | 659.7    | 660.1    | 675.1       | 675.0     | 659.4 | 658.8    |

The combination SIDACtor + MOV shows much less Ir and lower Vcl than MOV alone for 25°C and 125°C.



## **Overvoltage Protection Devices**

- Value of choosing hybrid technology against MOV only.
  - less than 1/100 leakage, particularly in high temp.
  - 300~400 lower Vcl
  - Protection Thyristor offers no wear out
  - Reduce IGBT/ MOSFET cost , Reduce Capacitor cost
  - Better in reliability over times and multiple strikes.





# Comparison between SIDACTOR + MOV and GDT+MOV



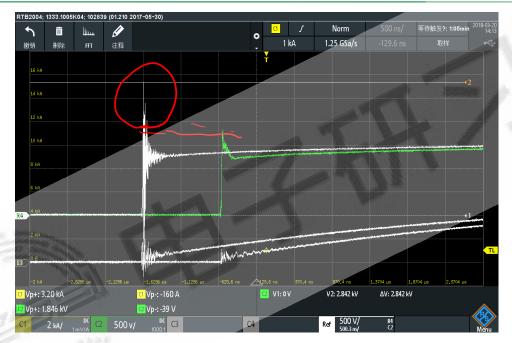
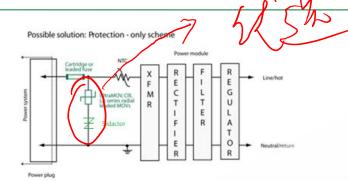
VR

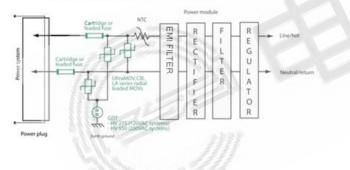
Figure3. CG2600+V20H385P IPP=5KA TEST Waveform compare with P3800MEL+ V20H385P Notice: this green waveform is GDT+V20H385P test waveform.

Littelfuse SCR/Diode presentation for TESLA 2015-10-29C



# +MOV +MOV



Figure 4. CG2600+V20H385P IPP=5KA TEST Waveform compare with <u>P3800MFL+ V20H385P</u>. Notice: this waveform was tested <u>under 500ns pulse width</u>.



# Power System Protection 72/0-



Possible solution: Protection + Isolation scheme





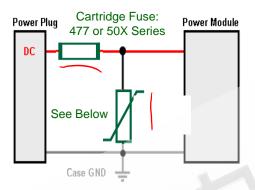
#### **Design Notes:**

<u>Protection Application:</u> Products that are directly connected to the AC mains (120 to 250VACrms) will be exposed to much more severe surge transients (lightning, load switching, etc.) and short circuit/overload conditions than on DC inputs. Because of this, the protection devices need to be more robust.

Solution Description: As shown at the left (top), a cartridge or leaded fuse (5x20mm, 2AG, 3AG, TE5/TR5) can be used for short circuit and overload current conditions. For surge protection, an MOV (e.g. C-III, UltraMOV and LA series) with high energy handling capabilities should be used.

For products that also require electrical isolation between the hot and neutral lines and chassis (earth) ground, a GDT should be selected (left, bottom). The GDT is used to provide electrical isolation for the safety of the consumer.

Companion Solutions: Does not apply.


Regulatory Issues: Standards that specify safety and performance criteria include:

- UL 6500/IEC 65065
- UL1414

• UI 1449 AC Lines Solution Description: 1)TMOV TMOV14RP385E 14mm 385Vac 505VDC 385Vac 505VDC TMOV20RP385E 20mm TMOV14RP3420E 14mm 420Vac 560VDC TMOV20RP420E 20mm 420Vac 560VDC 2)GDT 500VDC SI 1011A500 SL1011A600 600VDC CG3 2600V CG 3600V P3500ME P3800ME 3)Sidactor

Confidential and Proprietary | Littelfuse, Inc. © 2020 6

# **Circuit Protection of DC Input (PFC Circuit)**



MOV Options: CIII, Ultra MOV, LA Series

SMD TVS Diode Options: capacity of 10kA to 30kA@500Vdc for ratings from 16A to 30A, would come P4SMA.SMAJ,P6SMB, SMBJ,SMC,SMD, and SMFin handy. The 477 and 505, being 5x20 and 6x32, are smaller footprint 200W.

Axial Leaded TVS: P4/6/1.5KE, 3KP~30KP, AK1~15

#### TVS LTKAK/AK3/AK6/AK15

#### **Design Notes:**

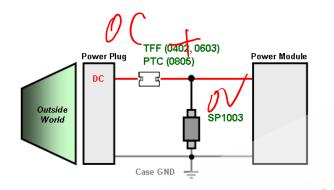
Protection Application: For customers that are using a PFC which changes AC to DC directly in some of the high DC power supply circuits.

Solution Description: You would need to consider the 400Vdc 5x20 477 series. For customers that require a significantly higher DC interrupt-rating in industrial or UPS applications. The small footprint 6x32 505 series, with a breaking capacity of 10kA to 30kA@500Vdc for ratings from 16A to 30A. would come in handy as well. The 477 and 505, being 5x20 and 6x32, are smaller footprint options for DC protection.

#### Companion Solutions: NA

Regulatory Issues: Standards will vary depending on the product to be protected. Examples include: IFC 61000-4-5 UL1414 UI 1449

Unique Features: The small footprint 6x32 505 series, with a breaking


options for DC protection .

Application Warnings: When selecting the fuse, be sure to consider the expected temperature in the area around the fuse, as well as the in-rush currents. Failure to take these factors into account may result in premature or nuisance tripping of the fuse.

Road Map Products to be Watching for: None



## **Circuit Protection of DC Input**



SMD TVS Diode Array Options: SP1003-01ETG (0402) SP1005-01ETG (0402) SP1005-01WTG (0201) SDxx-01FTG (0805) SP25XX SMF

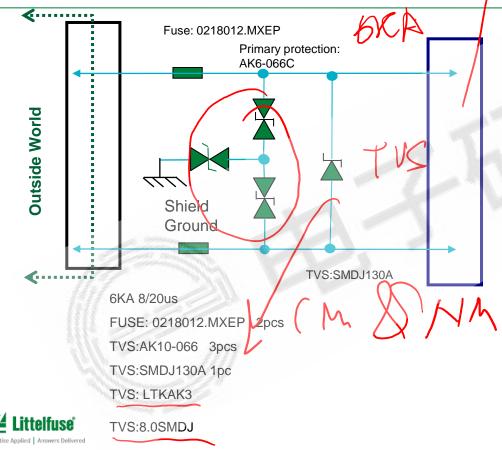
#### **Design Notes:**

<u>Protection Application:</u> For portable devices that include an external AC adapter, a DC voltage (typically in the range of  $3.3V_{DC}$  to  $5V_{DC}$ ) will be supplied to the unit. The electrical threats include ESD, low-leve lightning surges, and overcurrent conditions (short circuit or overload).

Solution Description: As shown at the left, a fuse or PTC can be used for short circuit and overload current conditions. For surge and ESD protection, a discrete diode can be used.

Companion Solutions: Other solutions exist in the SPA portfolio such as the SP1007 Series 0402 and 0201 TVS Diodes.

<u>Regulatory Issues:</u> For ESD, the IEC 61000-4-2 will be the most appropriate standard, and for lightning immunity the IEC 61000-4-5 may be consulted.


<u>Unique Features:</u> The SP1003 has ultra-low leakage of 100nA. The SP1005 is 0201 form factor and capable of 10A of lightning-induced surge ( $t_p=8/20\mu s$ ). The SDxx Series can handle up to 30A of lightning-induced surge ( $t_p=8/20\mu s$ ).

Application Warnings: None

Road Map Products to be Watching for: N/A

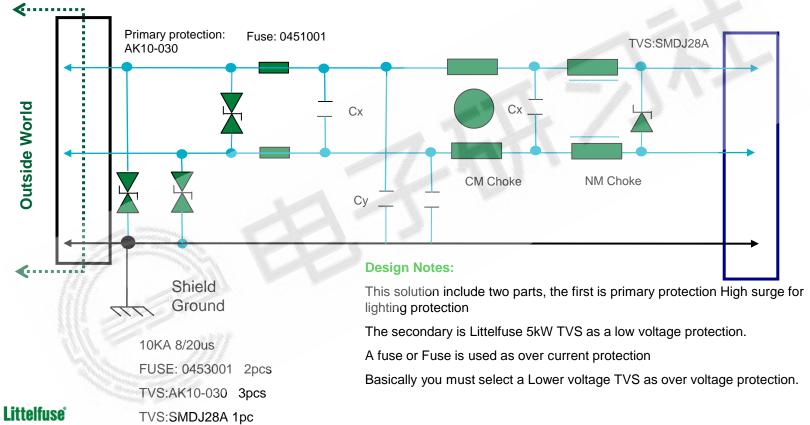


# Circuit Protection of 110VDC



## **Design Notes:**

This solution include two parts, the first is primary protection High surge for lighting protection

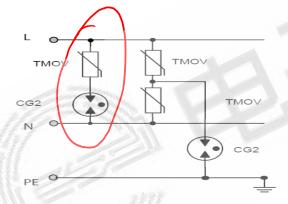

The secondary is Littelfuse 5kW TVS as a low voltage protection.

A fuse or Fuse is used as over current protection

Basically you must select a Lower voltage TVS as over voltage protection.

8/20us 6KA Surge Capability

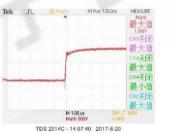
# Circuit Protection of 24VDC




Confidential and Proprietary | Littelfuse, Inc. © 2020 67

#### How to Protect AC Power Line?

This delta configuration provides:


- 1) Differential protection between L-N
- 2) Common mode protection for L&N-PE
- Prevents a current leakage path through the MOVs to PE(Zero energy stand-by consumption)



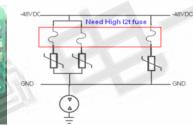
3) See Table 4 for technical requirements on power supply port protection for radio base station Table 4 Test of impulse current wave tolenance anti-lightning performance of radio base station power supply port

| Port type                                                                       | Lightning tolerance<br>different environment for | Criteria   |   |
|---------------------------------------------------------------------------------|--------------------------------------------------|------------|---|
|                                                                                 | Types L. M                                       | Types H, T |   |
| AC port                                                                         | 3 20 KA                                          | 2 20 kA    | G |
| Distributed base<br>station outdoor DC<br>power supply port                     | 2 15 KA                                          | 5 15 KA    | 0 |
| Distributed base<br>station external power<br>supplying DC power<br>supply port | ≥ 15 kA                                          | ≥ 15 kA    | C |

3. The lighting protection devices for DC ports can use vericus elements meeting safety



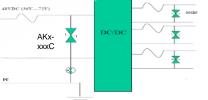



## **Protection Circuit for DC Power**


#### **DC** power protection

For the features of RRU's DC feeder, DC ports should be taken the following protection measures particularly.

- Feeder cables from RRU should have DC SPD and then access  $\geq$ into DC power cabinet.
- $\geq$ Shielded cable should be adopted for power lines and be connected with the earth bar(MEB) which out of the feedthrough window.
- If needed, DC SPD could be installed according to circuit  $\succ$ diagram shown in left.













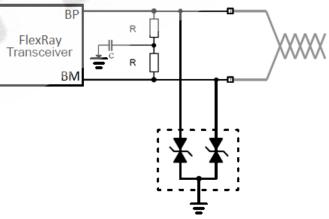

PE



### SM24FLEX-02HTG 200W, SOT23-3L Diode Array for FlexRay bus protection

#### Target Applications:

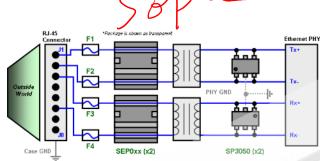
- Drive by wire
- Active suspension
- High-performance powertrain
- Adaptive cruise control


#### Features/benefits:

- 24V operating voltage
- Bidirectional design
- 24kV contact discharge
- SOT23 package
  - 2 and 4 channel options
- 10pF of capacitance



# SM24FLEX-02


#### Example of FlexRav bus protection





# Circuit Protection of Ethernet Port

- Lightning, Inter-building (GR-1089)



F1:F4 = 0461 1.25 Telelink Fuse

Ethernet: SEP0640Q38CB SIDACtor & SP3050-04HTG SPA™

Note: For 1GbE (1000Base-T) the protection scheme should replicated for the other 4 data lines.



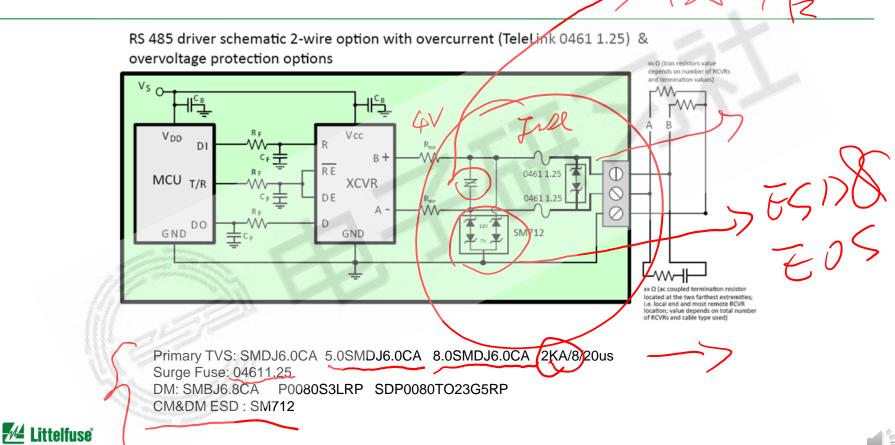
<u>Protection Application</u>: The data signals used in an Ethernet port vary between 1.0V (1000Base-T and 100Base-TX) to 2.5V (10Base-T), with maximum data rates of 1000Mbps, 100Mbps and 10Mbps, respectively. At these data rates, the capacitance of the suppressor needs to be taken into account. The signal lines to be protected from lightning include Tx $\pm$  and Rx $\pm$ .

Solution Description: As shown at the left, Telelink fuses are used for overcurrent protection for each data line, and the SEP series SIDACtor can be used for primary protection from lightning per the GR-1089 inter-building standard (500A, 2/10µs). The SEP064 has a working or standoff voltage of 58V allowing it be used in PoE and PoE+ applications. Last, a low capacitance diode array is used for secondary protection to suppress any letthrough energy.

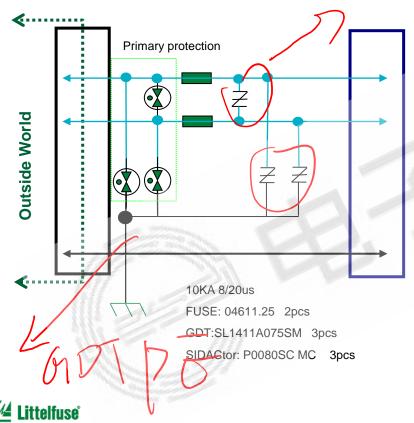
<u>Companion Solutions</u>: Other solutions within the LF portfolio exist in addition to these recommendations such as the SEP008 series. This lower voltage option can lower the clamping voltages in applications that do not need the higher standoff voltage due to PoE and PoE+ applications.

<u>Regulatory Issues:</u> Many standards could apply depending upon the end equipment usage such as GR-1089 or the IEC61000-4-5. Please consult Littelfuse for application support.

#### Unique Features: None


Road Map Products to be Watching for: SP4061 Series: < 4pF, 2.5V, 20A

| Ordering Number | Surge (t <sub>P</sub> =2/10µs) | I/O Capacitance @ V <sub>R</sub> =0V | Channels | V <sub>RWM</sub> | Packaging   |
|-----------------|--------------------------------|--------------------------------------|----------|------------------|-------------|
| SEP0640Q38CB    | 500A                           | See datasheet                        | 2        | 58V              | QFN (5x6mm) |
| SEP0080Q38CB    | 500A                           | See datasheet                        | 2        | 6V               | QFN (5x6mm) |
| SP3050-04HTG    | 10A                            | 2.4pF                                | 4        | 6V               | SOT23-6     |




# **Circuit Protection of RS485**

Expertise Applied Answers Delivered



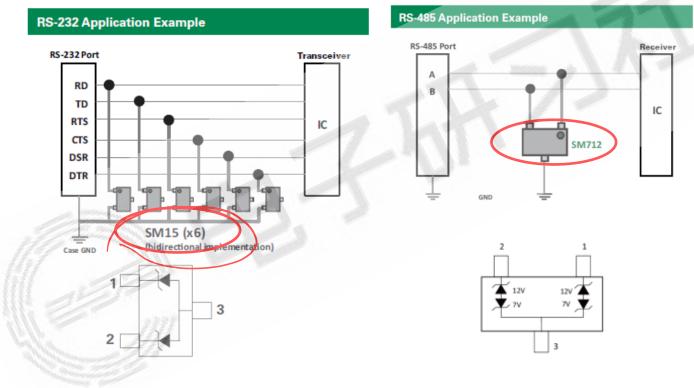
#### **Circuit Protection of RS485 Out Door**



#### **Design Notes:**

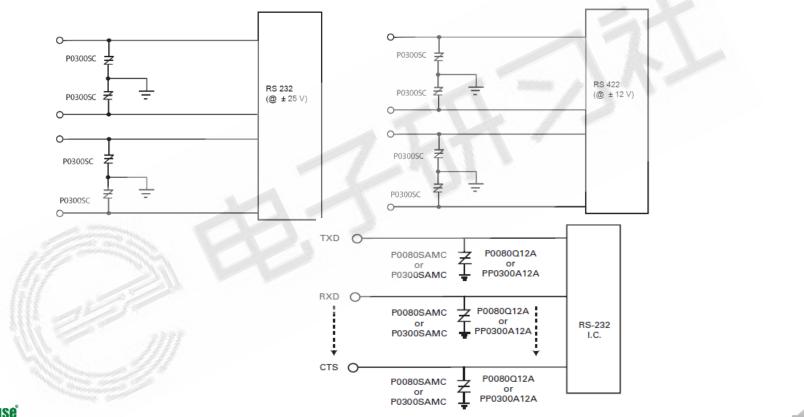
This solution include two parts, the first is primary protection GDT for lighting protection. If possible this application is for our door cable protection.

The secondary is Littelfuse SIDACtor as a low voltage protection.


A fuse or Fuse is used as over current protection

Basically you must select a SIDACtor as over voltage protection.

8/20us 5KA Surge Capability


Expertise Applied | Answers Delivered

# TVS Diode Array used on Interface 485/232 ports for ESD Protection





### **Circuit Protection of RS232**





11/



















# Thanks a lot

# 274857214Littelfuse

Expertise Applied | Answers Delivered